If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20a^2+16a=48
We move all terms to the left:
20a^2+16a-(48)=0
a = 20; b = 16; c = -48;
Δ = b2-4ac
Δ = 162-4·20·(-48)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-64}{2*20}=\frac{-80}{40} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+64}{2*20}=\frac{48}{40} =1+1/5 $
| 3*(x+2)=2(17-2x) | | 4+m=1 | | 3+2c=4 | | 79-x=83 | | 5-3y=4-4y | | (2/x+4)+(5/5x+20)=5 | | X^2-x=2x-5 | | 2y=5y+60 | | (x+7)-(2x+8)=25-3(x-2) | | X=9+(.36)x | | (2x-15)/7=x+5 | | 9+.36x=x | | 8.4^x=0.4^-x | | (5c)(3c)=c28cþ15 | | (5-c)(3-c)=c28cþ15 | | 6n=42= | | (5c)(3c)=0 | | 3)1/2n=60 | | 1200=x+3x | | 525=x+(4x-25) | | 525=4(x-25)+x | | 4x-3=2x+ | | x+0.06x=20000 | | 4b+-4b=0 | | 5(20+h)=2(30+h) | | 2q+5=36 | | 6+2a=34 | | 9+2h=32 | | 2z+1=28 | | 2z+1=24 | | 2j+1=26 | | 3x(x+2)(x-2)-4=0 |